兰州大学 李龙杰

Logo

实验室学风优良,定期进行实验室内部的学术讨论和交流,每周召开组会,研究生可随时与导师进行交流、讨论,鼓励学生尽早总结和发表科研成果。欢迎对数据挖掘、复杂网络分析等方向感兴趣的同学加入,也欢迎本科生参与实验室的科研工作。

View My GitHub Profile

主要论文

2024

  1. Yang, W., Li, L., Bai, S., Ma, Z., 2024. IS-GNN: Graph neural network enhanced by aggregating influential and structurally similar nodes. Knowledge-Based Systems 301, 112282. https://doi.org/10.1016/j.knosys.2024.112282
  2. Fang, S., Li, L., Bai, S., Ma, Z., Chen, X. Link Prediction based on Fundamental Heuristic Elements. 2024. https://doi.org/10.1142/S0129183124501614
  3. Mao, C., Li, L., Liu, L., Ma, Z.. Identification of Key Classes in Software Systems Based on Static Analysis and Voting Mechanism. International Journal of Software Engineering and Knowledge Engineering, 2024. https://doi.org/10.1142/S0218194024500220
  4. Li, L., Yang, W., Bai, S., Ma, Z., 2024. KNN-GNN: A powerful graph neural network enhanced by aggregating K-nearest neighbors in common subspace. Expert Systems with Applications 253, 124217. https://doi.org/10.1016/j.eswa.2024.124217
  5. Dong, H., Li, L., Tian, D., Sun, Y., Zhao, Y., 2024. Dynamic link prediction by learning the representation of node-pair via graph neural networks. Expert Systems with Applications, 241, 122685. https://doi.org/10.1016/j.eswa.2023.122685
  6. Jia, E., Tian, D., Nan, T., Li, L., 2024. Link Prediction in Dynamic Networks Based on Topological and Historical Information, Theoretical Computer Science, Communications in Computer and Information Science. Springer Nature, pp. 203–220. https://doi.org/10.1007/978-981-99-7743-7_13
  7. Shan, N., Yang, W., Zhang, Z., Li, L.., 2024. Link Prediction in Multiplex Network Based on Regression and Conditional Probability, Theoretical Computer Science, Communications in Computer and Information Science. Springer Nature Singapore, pp. 221–236. https://doi.org/10.1007/978-981-99-7743-7_14

2023

  1. Sun, Y., Zhao, Y., Li, L., Dong, H., 2023. Heterogeneous line graph neural network for link prediction. International Conference Advanced Data Mining and Applications (ADMA’23). https://doi.org/10.1007/978-3-031-46677-9_1.
  2. Zhao, Y., Sun, Y., Huang, Y., Li, L., Dong, H., 2023. Link prediction in heterogeneous networks based on metapath projection and aggregation. Expert Systems with Applications, 227, 120325. https://doi.org/10.1016/j.eswa.2023.120325.
  3. Liu, P., Li, L., Wen, Y. & Fang, S. (2023). Identifying influential nodes in social networks: Exploiting self-voting mechanism. Big Data, 11(4), 296-306. https://doi.org/10.1089/big.2022.0165.
  4. 张亚坤, 李龙杰, 陈晓云. (2023). 利用朴素贝叶斯模型进行多层网络链接预测. 应用科学学报, 41(1), 23–40. https://doi.org/10.3969/j.issn.0255-8297.2023.01.003.

2022

  1. Luo, H., Li, L., Dong, H., & Chen, X. (2022). Link prediction in multiplex networks: An evidence theory method. Knowledge-Based Systems, 257, 109932. https://doi.org/10.1016/j.knosys.2022.109932
  2. Fang, S., Li, L., Hu, B., & Chen, X. (2022). Evidential link prediction by exploiting the applicability of similarity indexes to nodes. Expert Systems with Applications, 210, 118397. https://doi.org/10.1016/j.eswa.2022.118397
  3. Li, L., Wen, Y., Bai, S. & Liu, P. (2022). Link prediction in weighted networks via motif predictor. Knowledge-Based Systems, 242, 108402. https://doi.org/10.1016/j.knosys.2022.108402
  4. Bai, S., Li, L., & Chen, X. (2022). Conflicting evidence combination based on Belief Mover’s Distance, Journal of Intelligent & Fuzzy Systems, 42(3), 2005-2021. https://doi.org/10.3233/JIFS-211397.

2021

  1. Liu, P., Li, L., Fang, S. & Yao, Y. (2021). Identifying influential nodes in social networks: A voting approach. Chaos, Solitons & Fractals, 152, 111309. https://doi.org/10.1016/j.chaos.2021.111309
  2. Bai, S., Zhang, Y., Li, L., Shan, N., & Chen, X. (2021). Effective Link Prediction in Multiplex Networks: A TOPSIS Method. Expert Systems With Applications, 177, 114973. https://doi.org/10.1016/j.eswa.2021.114973
  3. Li, L., Wang, H., Fang, S., Shan, N., & Chen, X. (2021). A supervised similarity measure for link prediction based on KNN. International Journal of Modern Physics C, 32(9), 2150112. https://doi.org/10.1142/S0129183121501126
  4. Luo, H., Li, L., Fang, S., & Chen, X. (2021). Link Prediction in Multiplex Networks using a Novel Multiple-Attribute Decision-Making Approach. Knowledge-Based Systems, 219, 106904. https://doi.org/10.1016/j.knosys.2021.106904
  5. Li, L., Wang, L., Luo, H., & Chen, X. (2021). Towards effective link prediction: A hybrid similarity model. Journal of Intelligent & Fuzzy Systems, 40(3). https://doi.org/10.3233/JIFS-200344

2020

  1. Shan, N., Li, L., Zhang, Y., Bai, S., & Chen, X. (2020). Supervised link prediction in multiplex networks. Knowledge-Based Systems, 203, 106168. https://doi.org/10.1016/j.knosys.2020.106168
  2. 李龙杰, 胡江龙, 陈晓云. (2020). 基于节点连接模式的缺失节点识别方法. 华中科技大学学报(自然科学版), 48(8), 91–97. https://doi.org/10.13245/j.hust.200816
  3. 刘昱阳, 李龙杰, 单娜, 陈晓云. (2020). 融合聚集系数的链接预测方法. 计算机应用, 40(1), 28–35. https://doi.org/10.11772/j.issn.1001-9081.2019061008

2019

  1. Bai, S., Fang, S., Li, L., Liu, R., & Chen, X. (2019). Enhancing link prediction by exploring community membership of nodes. International Journal of Modern Physics B, 33(31), 1950382. https://doi.org/10.1142/S021797921950382X
  2. Li, L., Wang, L., Bai, S., Fang, S., Cheng, J., & Chen, X. (2019). An effective similarity measure based on kernel spectral method for complex networks. International Journal of Modern Physics C, 30(7), 1–21. https://doi.org/10.1142/S0129183119400059
  3. Li, L., Xu, S., Leng, M., Fang, S., & Chen, X. (2019). Predicting top-L missing links: An improved Local Naïve Bayes model. IEEE Access, 7, 1–1. https://doi.org/10.1109/ACCESS.2019.2914724
  4. Li, L., Fang, S., Bai, S., Xu, S., Cheng, J., & Chen, X. (2019). Effective Link Prediction Based on Community Relationship Strength. IEEE Access, 7, 43233–43248. https://doi.org/10.1109/ACCESS.2019.2908208
  5. Cheng, J., Su, X., Yang, H., Li, L., Zhang, J., Zhao, S., & Chen, X. (2019). Neighbor Similarity Based Agglomerative Method for Community Detection in Networks. Complexity, 2019, 1–16. https://doi.org/10.1155/2019/8292485
  6. 单娜, 李龙杰, 刘昱阳, 陈晓云. (2019). 基于节点连接模式相关性的链接预测方法. 计算机科学, 46(12), 20. https://doi.org/10.11896/jsjkx.190700057

2018

  1. Li, L., Bai, S., Leng, M., Wang, L., & Chen, X. (2018). Finding Missing Links in Complex Networks: A Multiple-Attribute Decision-Making Method. Complexity, 2018, 1–16. https://doi.org/10.1155/2018/3579758
  2. Bai, S., Li, L., Cheng, J., Xu, S., & Chen, X. (2018). Predicting Missing Links Based on a New Triangle Structure. Complexity, 2018, 1–11. https://doi.org/10.1155/2018/7312603
  3. Li, L., Yu, Y., Bai, S., Hou, Y., & Chen, X. (2018). An Effective Two-Step Intrusion Detection Approach Based on Binary Classification and k-NN. IEEE Access, 6, 12060–12073. https://doi.org/10.1109/ACCESS.2017.2787719
  4. Li, L., Yu, Y., Bai, S., Cheng, J., & Chen, X. (2018). Towards Effective Network Intrusion Detection: A Hybrid Model Integrating Gini Index and GBDT with PSO. Journal of Sensors, 2018, 1–9. https://doi.org/10.1155/2018/1578314
  5. Cheng, J., Yin, X., Li, Q., Yang, H., Li, L., Leng, M., & Chen, X. (2018). Voting Simulation based Agglomerative Hierarchical Method for Network Community Detection. Scientific Reports, 8(1), 8064. https://doi.org/10.1038/s41598-018-26415-3

2017 and before

  1. Pan, L., Feng, X., Sang, F., Li, L., Leng, M., & Chen, X. (2017). An improved back propagation neural network based on complexity decomposition technology and modified flower pollination optimization for short-term load forecasting. Neural Computing and Applications, 31(7), 2679–2697. https://doi.org/10.1007/s00521-017-3222-2
  2. Chen, M., Li, L., Wang, B., Cheng, J., Pan, L., & Chen, X. (2016). Effectively clustering by finding density backbone based-on k NN. Pattern Recognition, 60, 486–498. https://doi.org/10.1016/j.patcog.2016.04.018
  3. Cheng, J., Li, L., Leng, M., Lu, W., Yao, Y., & Chen, X. (2016). A divisive spectral method for network community detection. Journal of Statistical Mechanics: Theory and Experiment, 2016(3), 033403. https://doi.org/10.1088/1742-5468/2016/03/033403
  4. Li, L., Qian, L., Wang, X., Luo, S., & Chen, X. (2015). Accurate similarity index based on activity and connectivity of node for link prediction. International Journal of Modern Physics B, 29(17). https://doi.org/10.1142/S0217979215501088
  5. Li, L., Qian, L., Cheng, J., Ma, M., & Chen, X. (2015). Accurate similarity index based on the contributions of paths and end nodes for link prediction. Journal of Information Science, 41(2), 167–177. https://doi.org/10.1177/0165551514560121
  6. Yao, Y., Cui, H., Liu, Y., Li, L., Zhang, L., & Chen, X. (2015). PMSVM: An optimized support vector machine classification algorithm based on pca and multilevel grid search methods. Mathematical Problems in Engineering, 2015. https://doi.org/10.1155/2015/320186
  7. Leng, M., Huang, L., Li, L., Zhou, H., Cheng, J., & Chen, X. (2015). Active semisupervised community detection based on asymmetric similarity measure. International Journal of Modern Physics B, 29(13). https://doi.org/10.1142/S0217979215500782
  8. Jin, R., Lee, V. E., & Li, L. (2014). Scalable and axiomatic ranking of network role similarity. ACM Transactions on Knowledge Discovery from Data, 8(1). https://doi.org/10.1145/2518176
  9. Li, L., Ma, M., Lei, P., Leng, M., & Chen, X. (2014). S2R&R2S: A framework for ranking vertex and computing vertex-pair similarity simultaneously. Journal of Information Science, 40(6). https://doi.org/10.1177/0165551514542902
  10. Li, L., Ma, M., Lei, P., Wang, X., & Chen, X. (2014). A linear approximate algorithm for earth mover’s distance with thresholded ground distance. Mathematical Problems in Engineering, 2014. https://doi.org/10.1155/2014/406358